

November 2003

GCE AS/A LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/04

BIOLOGY Paper 4 (Theory 2 (A2 Core))

Page 1	Mark Scheme		Paper
	GCE AS/A LEVEL – NOV 2003	9700	4

Question 1

(a)	1	sun leaves reach compensation point / zero gas exchange at higher light intensity;
	2	rate of photosynthesis increases more rapidly in sun leaves;
	2	CO- untaka in greater in shada laguas (ara) at lagu light intensity :

- 3 CO2 uptake is greater in shade leaves (ora) at low light intensity;
- 4 higher rate of photosynthesis / CO2 uptake in sun leaves (ora) at higher light intensity;
- 5 more respiration in sun leaves (ora) at zero or low light intensity;
- 6 CO₂ uptake levels off in shade leaves (ora);

3 max

accept CO₂ uptake for photosynthesis and vice versa accept CO₂ production for respiration and vice versa

(b) light no longer limiting;
some other factor limiting;
example carbon dioxide concentration / temperature / ref:chlorophyll;
3

(c) at low light intensity little or no effect / light (dependent reaction) limiting rate; at high light intensity increasing temperature will increase the rate of photosynthesis; ref. (effect of temperature on the rate of) enzyme controlled reactions / light independent stage;

detail - e.g. named enzyme (RuBISCO) / ref. Calvin Cycle;

ignore reference to sun / shade leaves

3 max

2

Total: 9

Question 2

(a) cytoplasm;
matrix in mitochondria;

(b) coenzyme;

carries electrons / protons / hydrogen ions / hydrogen / H / 2H / H⁺; R H₂ to electron transfer chain / AW; from glycolysis / link reaction / Krebs cycle; role of NAD in conversion / oxidation of triose phosphate to pyruvate in glycolysis; role of NAD in anaerobic respiration; 3 max

- in absence of oxygen electron transfer chain does not work;oxygen final acceptor at end of electron transfer chain;reduced NAD cannot be oxidised;
- (d) aerobic respiration produces more ATP / (ora); to produce the same amount of ATP more glucose broken down in glycolysis; glycolysis is the only part of respiration used / no ETC or oxidative phosphorylation; 2 max

Total: 10

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – NOV 2003	9700	4

Question 3

to a m	ses rapidly / sharply ; naximum of 7.0 - 7.5 / a rise of approximately 3 ; alls below original value ; ering from 240 minutes / AW ;	3 max
(b) (i) increa in islet (ii) as glu beta	se in glucose stimulates beta cells; s of Langerhans / pancreas; cose level drops; cells no longer stimulated / insulin secretion stops; is broken down;	2 2 max
(c) secret when cause raise b	ed by alpha cells; blood glucose levels low; glycogen to be converted to glucose; blood glucose; t ref: negative feedback / idea that glucagons action is opposite to insulin;	3 max Total : 10
Quest	ion 4	
(a)	parental genotype; gametes; offspring genotype; offspring phenotype; penalise once if other symbols used	4
(b)	suffer from vitamin K deficiency / require too much vitamin K ;	1
(c)	warfarin will kill rats without resistance - homozygous recessive; homozygous dominant rats require too much vitamin K; heterozygous rats most likely to survive and produce offspring; only 50% of offspring will be heterozygous;	3 max
(d)	results in a different codon / triplet; (may) result in change of amino acid; different primary protein structure; this may result in change in protein function; suitable example e.g. sickle cell anaemia;	3 max
		Total : 11

Page 3	Mark Scheme		Paper
GCE AS/A LEVEL – NOV 2003		9700	4

Question 5

(a)	globin / protein to amino acids ; haem to iron ; iron stored / reused ; residue / remainder to bile pigments / biliverdin / bilirubin ; pass into bile ;			4 may
	excreted;			4 max
(b)	NH ₂ / amino group removed ; to ammonia ;			
	and ke	eto acid / oxo produced ;		
	ref: ar	nmonia to urea ;		3 max
(c)	alternative mark schemes			
	1	ethanol / alcohol ;		
		oxidized;	R broken down	
		to ethanal / acetaldehyde in ; ref: respiration / fat synthesis;		
	OR			
	2	ammonia; combines with CO2; to produce urea; via ornithine cycle;		
	OR			
	3	lactate; oxidised; by dehydrogenase; to pyruvate;		
	OR			
	4	hydrogen peroxide; to water and oxygen; by catalase;	R hormones	3 max

Total: 10