June 2004

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/06

BIOLOGY Paper 6 (Options (A2))

Page	1	Mark Scheme Syllabus P	aper
		BIOLOGY – JUNE 2004 9700	6
Optio	n 1		
1 (a)		A <u>gastric</u> , pit / gland ; B muscularis mucosa ; C circular muscle / muscularis externa ; D mucosa ;	
		If answers to B and C are BOTH 'muscle' = ½ mark	
		half marks round up	2
(b)	(i)	secreted by chief cells / peptic cells / zymogen cells ; detail of secretion / exocytosis ; as pepsinogen ; short length / part, of (amino acid) chain removed ;	2
		by, hydrochloric acid / pepsin ;	2 max
	(ii)	(catalyses the) <u>hydrolysis</u> of proteins ; breaks peptide bonds (between amino acids in proteins) ; it is an endopeptidase / breaks bonds within the protein molecule ; produces, shorter lengths of amino acid chains / peptides ; preparation for exopeptidases ;	3 max
(c)	(i)	it increases / stimulates (the secretion of hydrochloric acid) ; maximum effect / maximum secretion, 120 minutes (after exposure of tissue to gastrin) ; levels off after 160 minutes / effect still present after 180 minutes ;	
		quantitative comparison with 'no hormone' values, e.g. maximum secretion is 8 times greater / 4.3 mmol H ⁺ per hour greater ;	3 max
	(ii)	as acidity increases secretion of somatostatin increases ; somatostatin inhibits secretion of hydrogen ions / HCl / acid ; as acidity drops somatostatin secretion also drops ; negative feedback ;	3 max
			e max
	(iii)	control of variable / fair test idea ; presence of food stimulates secretion of hormones	2

Page 2	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6
2 (a)	A (transverse process) muscle attachment ; B (centrum) support / rigidity / load-bearing ;		2
(b) (i)	[21 - 5 = 16 (16 ÷ 5) x 100 = 320%] working ; answer ;		
	correct answer = 2 marks		2
(ii) (risk of fracture) is greater in men than in women below age women than men above 49 ; both increase faster above age 50 ; rate of increase of risk in women is faster than in men above allow other comparative point ;	-	n 2 max
(iii)	 initial / normal, bone mass / bone density of women is less the men; ORA so loss of bone mass / decrease in calcium content, more like weaken bones substantially in women than in men; (on average) men may be more physically active / or relevant women below the age of 49; menopause / at approx. 50, in women results in loss of protect of oestrogen; ref to increased activity of osteoclasts and decreased activity 	tely to nt e.g. than ective effect	sts; 2 max

				Syllabus	Paper
			BIOLOGY – JUNE 2004	9700	6
3	(a)	(i)	carbon dioxide ;		1
		(ii)	hepatic vein ;		
			filtered from blood in, glomerulus / Bowman's capsule (in kin high pressure / ultrafiltration ; removed from body in urine / dissolved in water ;	dney) ;	
			detail ;		3 max
		(iii)	urea formation requires ATP / ammonia excretion, more er efficient / does not waste energy ; no ornithine cycle ;	nergy	
			no need to convert ammonia to less toxic compound ;		2 max
	(b)		the conversion of one amino acid to another ; by the transfer of an amine group from an amino acid ; to an organic acid ; amino acids <u>in diet</u> may not match the body's requirements can convert a type of amino acid in excess to a type in shor		3 max
					Total 9

	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6
4	correct ref. to optic nerve (in either) ; ref parasympathetic role (once only) ;		
(i)	(bright light) detected by, cells in retina / rods / cones ; action potentials / impulses, carried to brain in sensory neuro then to iris muscles in motor neurone ; (causes) contraction of circular muscles ;	one ;	4 max
(ii)	loss of focus on retina detected by brain ; action potentials / impulses, carried to ciliary muscle in moto (causes) contraction of ciliary muscle ; loosens tension on suspensory ligament ; lens resumes its natural shape / becomes more convex ;	or neurone ;	

Page 5	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6

Option 2

1.	(a)	(i)	A – capsomere ; B - nucleic acid / DNA / RNA ; C - envelope / lipid bilayer ; D – capsid ;	
			½ marks rounded up	2
		(ii)	50/500 x 10 ⁻⁶ / 50 x 10 ⁶ /500 ; 1 x 10 ⁵ / 100000 ;	2
	(b)		size ; can not reproduce outside host cell ; lack cellular organelles / structures / named example ; A no cell organisation AVP. ;	2 max
	(c)		viral, RNA / genetic material, enters <u>cell</u> ; viral genetic material replicated; viral protein synthesised; new viruses assembled; cell bursts / lysis / bud; more virus released to <i>infect / invade</i> other cells; AVP; for further detail	3 max
	(d)	(i)	1400 - 700/4 / 700/4 ; 175 <u>per year</u> ;	2
		(ii)	transfusions ; intravenous drug use / shared needles ; accidental contamination of blood / specific example ; via placenta / at birth ; breast feeding ;	2 max
		(iii)	protected sex / specific example ; better education / more aware ; change in sexual practise / specific example ; increased publicity ; AVP ;	2 max
				Total 15

Page 6	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6
2. (a) (i)	no moving parts; continuous circulation; maintained using difference in specific gravity; of rising aerated culture and air-depleted culture; heat exchange removes heat; produced from respiration;		3 max
(ii)	C source / glucose ; N source / ammonia; growth factor / choline ; minerals / ammonium sulphate / zinc sulphate / copper sul	phate / iron sı	ılphate; 3 max
(b)	coloured; flavoured; fibres pressed to form pieces / ref texture; reduction of RNA;		2 max

Page 7	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6
3. (a)	Describe the roles of barley and yeast enzymes in beer	production	
	amylase (from barley) ;		
	hydrolyses starch ;		
	to maltose ;		
	ref. α and β amylase ;		
	maltose converted to glucose ; maltase ;		
	anaerobic breakdown / glycolysis, of sugar ;		
	into <u>ethanol</u> and carbon dioxide ;		4 max
(b) (i)	end product not contaminated ;		
(b) (l)	enzyme more stable / less likely to be denatured ;		
	AVP e.g. cost ;		
	enzyme recovery easier ;		
	idea of enzyme can be reused ; AVP e.g. cost ;		4 max
			4 1110X
(ii)	α amylase ;		
()	more maltose produce ;		
	use of figures ;		2 max

Page 8		3	Mark Scheme	Syllabus	Paper
			BIOLOGY – JUNE 2004	9700	6
4	(a)	(i)	(a microorganism) containing recombinant DNA / DNA of a gene ; integrated into genetic material ; containing a specific gene ; AVP ; e.g. may have DNA removed, detail of process	another orga	nism / foreign 2 max
		(ii)	avoids allergic response ; other sources of insulin are not structurally identical to huma shortage of pigs ; objections to the use of animals ; prevent spread of disease ; easier to produce in large quantities ; AVP ; ; e.g. cost, religious objections	an insulin ;	2 max
	(b)		$\frac{2}{2} \frac{2}{2} \frac{2}$	//// 	··· ; •···;
			i.e. 1 for originals, 1 for each new one		3

Page	9	Mark Scheme	Syllabus	Paper
		BIOLOGY – JUNE 2004	9700	6
OPTI	ON 3	- GROWTH, DEVELOPMENT & REPRODUCTION		
1 (a)		result of asexual reproduction ; <u>genetically</u> identical ; same, genotype / DNA, as plant from which callus derived ; DNA replication ; mitotic division ; ref. rare (somatoclonal) mutation ;		max 3
(b)	(i)	 both cytokinin and auxin needed for, cell division / growth / l if only one present ; lowest conc. of cytokinin cf. auxin gives only roots / AW ; highest conc. of cytokinin cf. auxin gives only shoots / AW ; intermediate cytokinin to auxin concentration, gives more ca division/growth ; appropriate use of figures with units ; ref to different concentrations i.e. auxin conc higher through 	Illus/stimulate	
	(ii)	remove (from treatment D); give treatment B / description of treatment B ; justification ;		max 2
(c)	(i)	<u>156</u> x 100 ; 74% ;		2
	(ii)	 different methods stem tissue, has less contamination / better, than leaf discs average x 9 better / other appropriate comparison ; time of year both treatments highest % non-contamination in January ; lowest for leaf discs in August, for stem tissue in April ; 	;	
(d)		figures ; use medium with fungicide ; and antibiotic / AW ;		max 3
		better surface sterilisation ; A.V.P. ;		max 2
				Total: 15

Page 10	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6

2	(a)	(i)	decreases with increased age ; approx. same decrease from ages19 - 26 to 27 - 34 as from 27 - 34 to 35 - comparative figures ; peak same day for all ages ;	39 ; max 3
			peak same day for all ages,	max 5
		(ii)	older partners reduce probability of pregnancy in women aged $35-39$; not those aged $27-34$;	
			reduce <u>peak o</u> f women aged 19 – 26 ;	max 2
		(iii)	greater probability if intercourse is before ovulation ; peak fertility on same day in all groups ; 2 days before ovulation ; fertile period same length in all groups ; ref. figures <i>re</i> length ; <i>allow max</i> – 6 <i>to</i> +1, <i>min</i> – 5 <i>to</i> 0	max 2
	(b)		sperm need time (in female tract) ; for capacitation ; detail capacitation ;	
			to reach, oviduct/oocyte ; [A ovum] AVP (e.g. ref. cervical mucus/prostaglandins) ;	max 3
				Total: 10
3	(a)		 A connective / vascular tissue / vascular bundle ; B stomium ; [A line of dehiscence/AW] C pollen sac ; D tapetum ; [A nutritive layer] half marks rounded up 	2
	(b)		meiosis of, pollen/microspore, mother cell ; haploid cells ; tetrad/4 cells ;	
			each, secretes / separated by, wall / intine and exine ;	
			mitosis ; gives pollen tube nucleus and generative nucleus ;	
			mitosis of generative nucleus gives two male, nuclei/gametes ;	max 4
	(c)		open pollen sacs ;	
			correct detail ; [single opening + reflexed walls]	2
				Total: 8

Page 11	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6

large sample of, boys and girls/children ; [<i>A 100 or more</i>] height measured, annually / on a regular basis ; detail measurement ; at age 18/when mature height reached ; % reached each year calculated ; means ;	max 3
girls reach given % of final height earlier / girls' curve steeper than boys' between 2 and 12 ; figures ; girls reach final height earlier ; growth spurt for girls c. 11/12 - 13 y v. boys 13/14 – 15/16 y ; greatest change between 1 and 2 y for both ;	max 2
used to estimate a child's final height / monitor growth ; so that anomaly can be treated ; A.V.P. ; detail of A.V.P. :	max 2
	Total: 7
	height measured, annually / on a regular basis ; detail measurement ; at age 18/when mature height reached ; % reached each year calculated ; means ; girls reach given % of final height earlier / girls' curve steeper than boys' between 2 and 12 ; figures ; girls reach final height earlier ; growth spurt for girls c. 11/12 - 13 y v. boys 13/14 – 15/16 y ; greatest change between 1 and 2 y for both ; used to estimate a child's final height / monitor growth ; so that anomaly can be treated ;

Page 12		Mark Scheme		Paper		
		BIOLOGY – JUNE 2004	9700	6		
OPTI	OPTION 4 - APPLICATIONS OF GENETICS					
1 (a)		result of asexual reproduction ; <u>genetically</u> identical ; same, genotype / DNA, as plant from which callus derived ; DNA replication ; mitotic division ; ref. rare (somatoclonal) mutation ;		max 3		
(b)	(i)	 both cytokinin and auxin needed for, cell division / growth / l if only one present ; lowest conc. of cytokinin cf. auxin gives only roots / AW ; highest conc. of cytokinin cf. auxin gives only shoots / AW ; intermediate cytokinin to auxin concentration, gives more ca division/growth ; appropriate use of figures with units ; ref to different concentrations i.e. auxin conc higher through 	allus/stimulate			
	(ii)	remove (from treatment D); give treatment B / description of treatment B ; justification ;		max 2		
(c)	(i)	<u>156 x</u> 100 ; 74% ;		2		
	(iii)	<i>different methods</i> stem tissue, has less contamination / better, than leaf discs average x 9 better / other appropriate comparison ;	;			
		<i>time of year</i> both treatments highest % non-contamination in January ; lowest for leaf discs in August, for stem tissue in April ; figures ;		max 3		
(d)		use medium with fungicide ; and antibiotic / AW ; better surface sterilisation ; A.V.P. ;		max 2		
		,		max Z		
				Total: 15		

Page 13	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6

2	(a)	to prevent extinction ; to maintain, genetic diversity / gene pool ; to counteract inbreeding depression ; store of <u>alleles</u> ; for use in future / when needed ; for changed environment ; [<i>A e.g. of change - abiotic or biotic</i>] for, selective breeding/genetic engineering ;	max 4
I	(b)	artificial selection ; (often) faster than evolution ; man selective agent ; (dependent on) variation in, IR59655/parent variety ; plants chosen for desired traits and interbred ; offspring selected for desired traits and interbred ; ref. to traits in table ;	max 4

Page 14	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6

3 (a) AAbb sugarsnap with (thin) layer of cells lining pod / thin layer present, not lignified ;
 aaBB (sugarsnap) with no (thin) layer of cells lining pod ;

[A 'sugarsnap' x 2]

(b) Ab x aB; (gametes)

AaBb ; (F1 genotype)

tough pods/AW ; (F1 phenotype)

AaBb x AaBb ;

AB Ab aB ab x same; [A from sides of Punnett square]

genotypes in Punnett square;; [minus 1 for each of first two mistakes]

phenotypes identified ; [tough and sugarsnap / tough, thin layer and no layer]

ratio 9 tough : 7 sugarsnap / 9 tough: 3 thin layer: 4 no layer ;

NB for tough A 'inedible', for sugarsnap A 'edible'

max 8

gametes	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
	tough	tough	tough	tough
Ab	AABb	AAbb sugarsnap/	AaBb	Aabb sugarsnap/
	tough	thin layer	tough	thin layer
aB	AaBB	AaBb	aaBB sugarsnap/	aaBb sugarsnap/
	tough	tough	no layer	no layer
ab	AaBb	Aabb sugarsnap/	aaBb sugarsnap/	aabbsugarsnap/
	tough	thin layer	no layer	no layer

Page 15	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	6
4 (a)	dominant allele can mask (defective) recessive allele ; added to genome ; recessive allele does not have to be, removed/inactivated/s dominant disease allele would have to be, inactivated/AW ;		
	very difficult to do ;		max 3
(b)	liver site of production of, blood clotting proteins/plasma pro liver (large) active organ ; A.V.P. ; [<i>relatively insensitive to 'handling'</i>]	oteins / factor	1X ; max 2
(c)	2 sensible potential hazards allele may be inserted within another needed gene altering allele may be inserted into tissue other than target with unk allele may be inserted into germ line and passed via gamet virus may damage tissue ;	nown conseq	
	A.V.P.; [e.g. inserted in promoter/gene switching]		max 2
			Total: 7