June 2004

GCE A LEVEL

MARK SCHEME

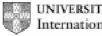
MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9700/04

BIOLOGY Paper 4 (Theory 2 (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

(a) peptide bonds between amino acids ; primary structure / amino acid sequence determines folding sites ; hydrogen bonds maintain (secondary structure); ref. beta pleated sheet / alpha helix ; ref. folding to form tertiary structure / globular shape ; sulphur bridges / ionic bonds / Van de Waals forces / hydrophobic interactions;


3 max

(b) reverse transcriptase / synthesise DNA from mRNA ; restriction endonuclease / enzyme ; produces sticky ends ; plasmid cut by restriction enzyme; recombinant DNA formed ; DNA ligase (correct ref); DNA inserted into host e.g. Hamster kidney / ovary cells ; Detail of insertion e.g. electric shock / calcium ions.

4 max

- (c) no contamination / ref. named infection HIV / reduced rate of infection / greater production rate; 1
- (d) ref. to introns and exons / only mammalian cells have Golgi / enzymes (for post translational modification);

1

Page 2	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

	correctly indicated on inner membrane ; correctly indicated in matrix ;	2
(b)	folded inner membrane / cristae ; increases surface area available ; intermembrane space ;	
	allows accumulation of H^+ ; impermeability of inner membrane to H^+ ;	
	maintains H ⁺ gradient / H ⁺ only go through channels ; stalked particles / ATPase ; channel for H ⁺ / ATP synthesis ;	
	linear arrangement of ETC on inner membrane ; greater efficiency ;	
(c)	(no) oxygen to combine with e ⁻ / H ⁺ / H / 2H / proton ; at the end of the ETC ; no H ⁺ gradient produced ; no ATP synthesized / oxidative phosphorylation does not occur ; no NAD regenerated / NADH not oxidized ; stops Krebs cycle ;	4 max
		3 max Total: 9

Page 3	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

(a)	A B	microvilli / brush border ; invagination / infolding of membrane / basal channels ;	
			2
(b)	many carrie diffus tight tubul	I channels / microvilli / brush border – increase surface area ; v mitochondria – provide ATP for active transport ; er proteins / cation pumps in csm – active uptake / facilitated sion / co-transport ; junctions – prevent migration of membrane proteins / separate e fluid ; o pincocytosis – protein uptake ;	3 max
(c)	creat	actively transported (out of cell) into blood ; es concentration gradient ; enters cell by diffusion ;	

Na⁺ enters cell by diffusion ; through cotransporter / symporter proteins ; glucose cotransported / facilitated diffusion (from lumen to cells) ; glucose diffuses into blood capillaries ;

3 max

(d) proximal convoluted tubule cells have a low / more negative water / solute potential;
due to high concentration of salts / ions / glucose / Na⁺;
water enters by osmosis;
down water potential gradient (idea);

2 max

Page 4	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

- (a) Use one of the following schemes 1, 2 or 3.
 - 1 named example e.g. sickle cell anaemia / PKU change base ; may change amino acid ; change folding / shape of protein ; detail of affect of protein changes ;
 - 2 named example e.g. PKU ; R sickle cell anaemia lack of enzyme / non functioning enzyme ; 2 x phenotype changes / symptoms ;;
 - chromosome mutation ; detail of mutation ; named example e.g. Down's syndrome ; 2 x symptoms ;;

4 max

 (b) homozygotes for sickle cell allele die from sickle cell anaemia ; sickle cell allele frequent in malarial areas ; heterozygotes are resistant to malaria / have selective advantage ; therefore pass on sickle cell allele ; homozygous normal suffer / die from malaria ;

4 max

Page 5	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

(a)

black female	Х	orange male
$X^{B}X^{B}$		Х ^о Ү ;
tortoiseshell female		black male
X ^B X ^O		X ^B Y ; *
orange female	х	black male
X°X°		X ^B Y ;
tortoiseshell female		orange male
X ^B X ^O		X ⁰ Y ; *

(* must also have either gametes / construction lines / punnet square).

(b)

tortoiseshell female

X^BX^O;

black female

X^BX^B;

black male

 $X^{B}Y$;

orange male

X^oY ;

(phenotypes and genotypes must be linked otherwise max 2). (penalize **once** for lack of gender).

(c) X chromosome inactivated randomly early in development / AVP ;

Page 6	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

(a)

- 1 depolarisation/action potential;
- 2 of presynaptic membran,/synaptic knob;
- 3 opening calcium ion channels;
- 4 calcium ions in ;
- 5 vesicles containing transmitter / acetylcholine ;
- 6 fuse with membrane ;
- 7 contents emptied into synaptic cleft / exocytosis ;
- 8 transmitter / acetylcholine diffuses across synaptic cleft ;

9 transmitter / acetylcholine binds to receptor ; R protein channel 10

- on post synaptic membrane ;
- 11 Na⁺ channels open / Na⁺ enters ;
- 12 depolarises post synaptic membrane ;
- 13 action potential set up / impulse transmitted ;
- 14 breakdown / hydrolysis of transmitter / acetylcholine by enzyme / cholinesterase ;

9 max

(b)

- 15 when blood glucose levels low;
- 16 glucagon released from alpha cells (in pancreas);
- 17 (acts on) liver (cells);
- breakdown of glycogen to glucose; 18
- use of fatty acids in respiration; 19
- 20 production of glucose from other compounds / fats / amino acids / gluconeogenesis;
- 21 liver releases glucose into blood ;
- 22 glucose levels rise / return to normal;
- 23 switching off glucagon secretion;
- 24 antagonistic to insulin ;

6 max

Total: 15

R fats

Page 7	Mark Scheme	Syllabus	Paper
	BIOLOGY – JUNE 2004	9700	4

(a)

- 1 RuBP 5C ;
- 2 combines with carbon dioxide ;
- 3 rubisco ;
- 4 to form an unstable 6C compound ;
- 5 which forms 2 X GP (PGA);
- 6 ATP;
- 7 energy source
- 8 and reduced NADP ;
- 9 forms TP (GALP);
- 10 TP used to form glucose / carbohydrates 1 lipids / amino acids ;
- 11 TP used in regeneration of RuBP
- 12 requires ATP ;
- 13 as source of phosphate ;
- 14 light independent ;

9 max

(b)

- 15 coenzyme ;
- 16 reduced ;
- 17 carries protons ;
- 18 and (high energy) electrons ;
- 19 from photosystem7light stage ;
- 20 on thylakoid membrane grans ;
- 21 to stroma / Calvin cycl~
- 22 ref. regeneration of NADP ;

6 max

R photosystem II