Transformation of Graphs

Question Paper 1

Level	IGCSE
Exam Board	Edexcel
Subject	Mathematics
Topic	Sequences, functions \& graphs
Sub-Topic	Transformation of Graphs
Booklet	Question Paper 1

Time Allowed:	$\mathbf{4 4}$ minutes
Score:	$/ 39$
Percentage:	$/ 100$

Grade Boundaries:

| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>90 \%$ | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% |

1 The graph of $y=\mathrm{f}(x)$ is shown on each of the grids.
(a) On this grid, sketch the graph of $y=\mathrm{f}(x-3)$

(2)
(b) On this grid, sketch the graph of $y=2 \mathrm{f}(x)$

(2)
$2 \quad y=\mathrm{f}(x)$
The graph of $y=\mathrm{f}(x)$ is shown on the grid.

(a) On the grid above, sketch the graph of $y=-\mathrm{f}(x)$.

The graph of $y=\mathrm{f}(x)$ is shown on the grid.

The graph \mathbf{G} is a translation of the graph of $y=\mathrm{f}(x)$.
(b) Write down the equation of graph \mathbf{G}.

The diagram shows part of the curve with equation $y=\mathrm{f}(x)$.
The coordinates of the minimum point of this curve are $(3,-4)$
Write down the coordinates of the minimum point of the curve with equation
(i) $y=\mathrm{f}(x)+3$
(ii) $y=\mathrm{f}(x+2)$
(iii) $y=\mathrm{f}(-x)$

The diagram shows part of the curve with equation $y=\mathrm{f}(x)$.
The coordinates of the maximum point of the curve are $(3,5)$.
(a) Write down the coordinates of the maximum point of the curve with equation
(i) $y=\mathrm{f}(x+3)$
(ii) $y=-\mathrm{f}(x)$
\qquad
(iii) $y=\mathrm{f}(-x)$

(3)

The curve with equation $y=\mathrm{f}(x)$ is transformed to give the curve with equation $y=\mathrm{f}(x)-4$
(b) Describe the transformation.

Here is the graph of $y=\sin x^{\circ}$ for $-180 \leqslant x \leqslant 180$

(a) On the grid above, sketch the graph of $y=\sin x^{\circ}+2$ for $-180 \leqslant x \leqslant 180$

Here is the graph of $y=\cos x^{\circ}$ for $-180 \leqslant x \leqslant 180$

(b) On the grid above, sketch the graph of $y=-\cos x^{\circ}$ for $-180 \leqslant x \leqslant 180$

6 Here is the graph of $y=\sin x^{\circ}$ for $-180 \leqslant x \leqslant 180$

On the grid, sketch the graph of $y=\sin x^{\circ}-2$ for $-180 \leqslant x \leqslant 180$

The curve with equation $y=\mathrm{f}(x)$ is translated so that the point at $(0,0)$ is mapped onto the point $(4,0)$.

Find an equation of the translated curve.

The graph of $y=\mathrm{f}(x)$ is shown on the grid.

The graph \mathbf{G} is a translation of the graph of $y=\mathrm{f}(x)$.
(a) Write down, in terms of f , the equation of graph \mathbf{G}.

$$
y=
$$

The graph of $y=\mathrm{f}(x)$ has a maximum point at $(-4,3)$.
(b) Write down the coordinates of the maximum point of the graph of $y=\mathrm{f}(-x)$.
\qquad

9 The graph of $y=\mathrm{f}(x)$ is shown on the grids.
(a) On this grid, sketch the graph of $y=\mathrm{f}(x-3)$

(b) On this grid, sketch the graph of $y=-\mathrm{f}(x)$

The graph of $y=\mathrm{f}(x)$ is shown on both grids below.

(a) On the grid above, sketch the graph of $y=\mathrm{f}(-x)$

(b) On this grid, sketch the graph of $y=-\mathrm{f}(x)+3$

11 The graph of $y=\mathrm{f}(x)$ is transformed to give the graph of $y=-\mathrm{f}(x+3)$ The point A on the graph of $y=\mathrm{f}(x)$ is mapped to the point P on the graph of $y=-\mathrm{f}(x+3)$

The coordinates of point A are $(9,1)$
Find the coordinates of point P.

12 (b) The graph of $y=\mathrm{f}(x)$ is shown on both grids below.
(i) On this grid, draw the graph of $y=-\mathrm{f}(x)$

(ii) On the grid below, draw the graph of $y=\mathrm{f}(x-3)$

13 This is a sketch of the curve with the equation $y=\mathrm{f}(x)$.
The only minimum point of the curve is at $P(3,-4)$.

(a) Write down the coordinates of the minimum point of the curve with the equation $y=\mathrm{f}(x-2)$
\qquad
(b) Write down the coordinates of the minimum point of the curve with the equation $y=\mathrm{f}(x+5)+6$
\qquad

