

Algebraic Proof

Question Paper 1

Level	IGCSE
Exam Board	Edexcel
Subject	Mathematics
Торіс	Equations, formulae & identities
Sub-Topic	Algebraic Proof
Booklet	Question Paper 1

Time Allowed:	44 minutes		
Score:	/38		
Percentage:	/100		

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>90%	80%	70%	60%	50%	40%	30%	20%	10%

1 Prove that

 $(2n+3)^2 - (2n-3)^2$ is a multiple of 8

for all positive integer values of *n*.

(Total 3 marks)

2 (i) Factorise $2t^2 + 5t + 2$

(3)

(ii) *t* is a positive whole number.

The expression $2t^2 + 5t + 2$ can never have a value that is a prime number.

Explain why.

3 Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

(Total 4 marks)

4 Prove algebraically that

 $(2n + 1)^2 - (2n + 1)$ is an even number

for all positive integer values of *n*.

(3)

(Total 3 marks)

5 Show that $(n+3)^2 - (n-3)^2$ is an even number for all positive integer values of *n*.

(Total 3 marks)

6 Prove that, for all positive values of *n*,

$$\frac{(n+2)^2 - (n+1)^2}{2n^2 + 3n} = \frac{1}{n}$$

(Total 4 marks)

7 n is an integer greater than 1

Prove algebraically that $n^2 - 2 - (n - 2)^2$ is always an even number.

(Total 4 marks)

8 *ABCD* is a quadrilateral.

AB = CD. Angle ABC = angle BCD.

Prove that AC = BD.

9 *A*, *B*, *C* and *D* are four points on the circumference of a circle.

AEC and BED are straight lines.

Prove that triangle *ABE* and triangle *DCE* are similar. You must give reasons for each stage of your working.

(Total 3 marks)

10 *n* is an integer.

Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

(Total 2 marks)

11 Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation $x^2 + y^2 = 20$

(Total 5 marks)