Algebraic Proof

Question Paper 1

Level	IGCSE
Exam Board	Edexcel
Subject	Mathematics
Topic	Equations, formulae \& identities
Sub-Topic	Algebraic Proof
Booklet	Question Paper 1

Time Allowed:	44 minutes
Score:	$/ 38$
Percentage:	$/ 100$

Grade Boundaries:

| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>90 \%$ | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% |

For more awesome resources, visit us at wwwsavemyexams.co.uk

Prove that

$$
(2 n+3)^{2}-(2 n-3)^{2} \text { is a multiple of } 8
$$

for all positive integer values of n.
(Total 3 marks)
(ii) t is a positive whole number.

The expression $\quad 2 t^{2}+5 t+2$ can never have a value that is a prime number.
Explain why.
er more awesome resources, visit us at www.savemyexams.co.uk

3 Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

Prove algebraically that

$$
\begin{equation*}
(2 n+1)^{2}-(2 n+1) \text { is an even number } \tag{3}
\end{equation*}
$$

for all positive integer values of n.

5 Show that $(n+3)^{2}-(n-3)^{2}$ is an even number for all positive integer values of n.

Prove that, for all positive values of n,

$$
\frac{(n+2)^{2}-(n+1)^{2}}{2 n^{2}+3 n}=\frac{1}{n}
$$

n is an integer greater than 1
Prove algebraically that $n^{2}-2-(n-2)^{2}$ is always an even number.
(Total 4 marks)
$A B C D$ is a quadrilateral.

$A B=C D$.
Angle $A B C=$ angle $B C D$.
Prove that $A C=B D$.
$9 \quad A, B, C$ and D are four points on the circumference of a circle.

$A E C$ and $B E D$ are straight lines.
Prove that triangle $A B E$ and triangle $D C E$ are similar.
You must give reasons for each stage of your working.

For more awesome resources, visit us at wwwsavemyexams.co.uk
n is an integer.
Prove algebraically that the sum of $\frac{1}{2} n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

11 Prove algebraically that the straight line with equation $x-2 y=10$ is a tangent to the circle with equation $x^{2}+y^{2}=20$

