Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Change of State

Question paper 1

Level	IGCSE
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Solids, Liquids and Gases
Sub-Topic	Change of State
Booklet	Question paper 1

Time Allowed: 9 minutes

Score: /7

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'75%	70%	60%	55%	50%	<50%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) Temperature can be measured using different scales.

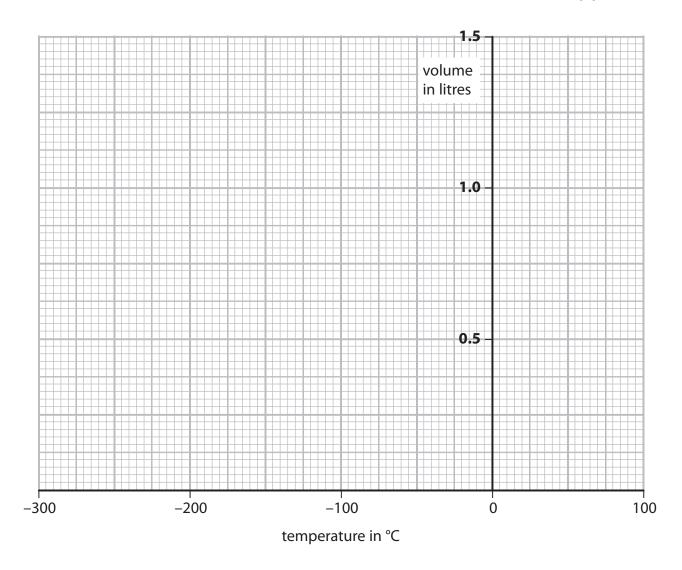
Complete the table by inserting the missing temperatures.

(2)

Temperature	Boiling point of liquid nitrogen	Boiling point of water
in °C		100
in Kelvin	77	

(b) Some students measure the volume of a sample of gas at different temperatures.

The table below shows their results.


Temperature in °C	Volume in litres
-20	0.95
0	0.85
50	1.20
80	1.30
100	1.40

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i) Draw a graph to show how the volume of gas varies with temperature.

(3)

(ii) Circle the anomalous point on your graph.

(1)

(iii) Use your graph to find the temperature of the gas when its volume is zero.

(1)

temperature =°C

(Total for Question 1 = 7 marks)