

Probability Distributions

Question Paper 1

Level	A LEVEL
Exam Board	Edexcel
Subject	Mathematics
Module	Mechanics and Statistics
Topic	Statistical distributions
Sub-Topic	Probability distributions
Booklet	Question Paper 1

Time Allowed: 45 minutes

Score: /38

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	77.5%	70%	62.5%	57.5%	45%	<45%

1. The discrete random variable *X* has probability function

$$P(X=x) = \begin{cases} k(2-x), & x = 0, 1, 2, \\ k(x-2), & x = 3, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a positive constant.

a Show that
$$k = 0.25$$
. (2)

Two independent observations X_1 and X_2 are made of X.

(a) Show that
$$P(X_1 + X_2 = 5) = 0$$
. (1)

(b) Find the complete probability function for
$$X_1 + X_2$$
. (3)

(c) Find
$$P(1.3 \le X_1 + X_2 \le 3.2)$$
. (3)

(Total 9 marks)

2. A discrete random variable X has the probability function shown in the table below.

x	0	1	2	3
P(X=x)	1/3	1 2	<u>1</u> 12	<u>1</u> 12

Find

(2) $a P(1 < X \le 3),$

(Total 2 marks)

3.	The random	variable X1	nas proba	bility f	function

P(X = x) = kx, x = 1, 2, ..., 5. (a) Show that $k = \frac{1}{15}$.

(b) Find

P(X < 4), (2)

(Total 4 marks)

- 4. A discrete random variable is such that each of its values is assumed to be equally likely.
 - (a) Write down the name of the distribution that could be used to model this random variable.
 - (b) Give an example of such a distribution. (1)
 - (c) Comment on the assumption that each value is equally likely. (2)
 - (d) Suggest how you might refine the model in part (a). (2)

(Total 6 marks)

(1)

5. The random variable X has probability function

$$P(X = x) = \frac{(2x-1)}{36}$$
 $x = 1, 2, 3, 4, 5, 6.$

(a) Construct a table giving the probability distribution of X.

(3)

Find

(b)
$$P(2 < X \le 5)$$
, (2)

(Total 5 marks)

6. Tetrahedral dice have four faces. Two fair tetrahedral dice, one red and one blue, have faces numbered 0, 1, 2, and 3 respectively. The dice are rolled and the numbers face down on the two dice are recorded. The random variable *R* is the score on the red die and the random variable *B* is the score on the blue die.

(a) Find
$$P(R=3 \text{ and } B=0)$$
.

(2)

The random variable T is R multiplied by B.

(b) Complete the diagram below to represent the sample space that shows all the possible values of T.

3				
2		2		
1	0			
0				
B R	0	1	2	3

Sample space diagram of T

(3)

(c) The table below represents the probability distribution of the random variable T.

t	0	1	2	3	4	6	9
P(T=t)	а	b	1/8	1/8	С	1/8	d

Find the values of a, b, c and d.

(3)

(Total 8 marks)

7. The probability function of a discrete random variable X is given by

$$p(x) = kx^2$$
 $x = 1, 2, 3$

where k is a positive constant.

(a) Show that
$$k = \frac{1}{14}$$
 (2)

Find

(b)
$$P(X \ge 2)$$
 (2)

(Total 4 marks)