

Variance & standard deviation Question Paper 1

Level	A Level
Exam Board	Edexcel
Subject	Mathematics
Module	Mechanics and Statistics
Торіс	Location and spread
Sub-Topic	Variance & standard deviation
Booklet	Question paper 1

Time Allowed:	40 minutes
Score:	/32
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	77.5%	70%	62.5%	57.5%	45%	<45%

Kaff coffee is sold in packets. A seller measures the masses of the contents of a random sample of 90
packets of Kaff coffee from her stock. The results are shown in the table below.

Mass w (g)	Midpoint $y(g)$	Frequency (f)
$240 \le w < 245$	242.5	8
$245 \le w < 248$	246.5	15
$248 \le w < 252$	250	35
$252 \le w < 255$	253.5	23
$255 \le w < 260$	257.5	9

(You may use $\sum fy^2 = 5\,644\,171.75$)

Estimate the mean and the standard deviation of the mass of the contents of a packet of *Kaff coffee* to 1 decimal place.

(3)

(Total 3 marks)

2. The following grouped frequency distribution summarises the number of minutes, to the nearest minute, that a random sample of 200 motorists were delayed by roadworks on a stretch of motorway.

Delay (mins)	Number of motorists
46	15
7—8	28
9	49
10	53
11—12	30
13—15	15
16—20	10

(a) Use interpolation to estimate the median of this distribution. (2)

(b) Calculate an estimate of the mean and an estimate of the standard deviation (6) of these data.

(Total 8 marks)

3. Over a period of time, the number of people x leaving a hotel each morning was recorded. These data are summarised in the stem and leaf diagram below.

Number	r lea	ving	5	3	2	mea	ns 32	Totals
2	7	9	9					(3)
3	2	2	3	5	6			(5)
4	0	1	4	8	9			(5)
5	2	3	3	6	6	6	8	(7)
6	0	1	4	5				(4)
7	2	3						(2)
8	1							(1)

For these data,

(a) write down the mode,	
	(1)
(b) find the values of the three quartiles.	
	(3)
Given that $Ox = 1335$ and $Ox^2 = 71801$, find	

(c) the mean and the standard deviation of these data. (4)

(Total 8 marks)

Distance (to the nearest mile)	Number of commuters
0–9	10
10–19	19
20–29	43
30–39	25
40-49	8
50–59	6
60–69	5
70–79	3
80-89	1

4. Summarised below are the distances, to the nearest mile, travelled to work by a random sample of 120 commuters.

For this distribution,

(a) use linear interpolation to estimate its median.

The mid-point of each class was represented by x and its corresponding frequency by f giving

$$\Sigma f x = 3550$$
 and $\Sigma f x^2 = 138020$

(b) Estimate the mean and the standard deviation of this distribution. (3)

(Total 5 marks)

(2)

Weight (kg)	Midpoint, xkg	Frequency, f
0.0 - 1.0	0.50	1
1.0 - 2.0	1.50	6
2.0 - 2.5	2.25	60
2.5 - 3.0		280
3.0 - 3.5	3.25	820
3.5 - 4.0	3.75	320
4.0 - 5.0	4.50	10
5.0 - 6.0		3

5. The birth weights, in kg, of 1500 babies are summarised in the table below.

[You may use $\sum fx = 4841$ and $\sum fx^2 = 15889.5$]

Calculate an estimate of the standard deviation of the birth weight.

(3)

(Total 3 marks)

6. On a randomly chosen day, each of the 32 students in a class recorded the time, *t* minutes to the nearest minute, they spent on their homework. The data for the class is summarised in the following table.

Time, <i>t</i>	Number of students
10-19	2
20-29	4
30 - 39	8
40-49	11
50 - 69	5
70 - 79	2

(a) Use interpolation to estimate the value of the median.

Given that

$$\sum t = 1414$$
 and $\sum t^2 = 69378$

(b) find the mean and the standard deviation of the times spent by the students on their homework.

(3)

(Total 5 marks)

(2)