

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/11 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓[↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pag	e 4	Mark Scheme				Syllabus	Paper]
			Cambridge International AS/A Level – Oct	ober/Nove	mber	2016	9709	11]
1	(i)	(x-	$(+3)^2 - 7$	B1B1	[2]	For a	= 3, <i>b</i> = -7		
	(ii)	1,-x >	7 seen 1, $x < -7$ oe	B1 B1	[2]	x > 1 Allow	or $x < -7$ $x \leq -7, x \geq$	1 oe	
2		8C0 28	$5(2x)^{6}\left(\frac{1}{2x^{3}}\right)^{2}$ soi × 64× $\frac{1}{4}$ oe (powers and factorials evaluated)	B1 B2,1,0		May t terms May t terms	May be seen within a number of terms May be seen within a number of terms		
		448		B1	[4]	Identi	Identified as answer		
3	(i)	2rα α =	$\alpha + r\alpha + 2r = 4.4r$ $= 0.8$	M1 A1	[2]	At lea	st 3 of the 4	terms requi	red
	(ii)	¹ /2((3/	$(2r)^2 0.8 - \frac{1}{2}(r^2) 0.8 = 30$ $(2)r^2 \times 0.8 = 30 \rightarrow r = 5$	M1A1√ [≜] A1	[3]	Ft thro	ough on <i>their</i>	rα	
4	(i)	$C = m_A$ Equ	= (4, -2) $_{B} = -1/2 \rightarrow m_{CD} = 2$ hation of <i>CD</i> is $y+2=2(x-4)$ oe = 2x-10	B1 M1 M1 A1	[4]	Use o Use o equati	$f_{m_1m_2} = -1$ f <i>their C</i> and fon	on their m_A m_{CD} in a li	^{4B} ine
	(ii)	AL AD	$p^{2} = (14 - 0)^{2} + (-7 - (-10))^{2}$ = 14.3 or $\sqrt{205}$	M1 A1	[2]	Use th	<i>heir D</i> in a co	prrect metho	od
5		a(1	$(r+r) = 50 \text{ or } \frac{a(1-r^2)}{1-r} = 50$ $a(1-r^3)$	B1					
		ar Elin $r =$ $a =$ $S =$	$(1+r) = 30 \text{ or } \frac{r(r-r)}{1-r} = 30 + a$ minating <i>a</i> or <i>r</i> 3/5 = 125/4 oe = 625/8 oe	B1 M1 A1 A1 A1√ [№]	[6]	Or oth for <i>r</i> Any c Ft thre	herwise atten correct metho ough on <i>their</i> r < 1	npt to solve od <i>r r</i> and <i>a</i>	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

6 (i)	$\cos^4 x = (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x$ AG	B1	[1]	Could be LHS to RHS or vice versa
(ii)	$8\sin^{4}x + 1 - 2\sin^{2}x + \sin^{4}x = 2(1 - \sin^{2}x)$ $9\sin^{4}x = 1$ $x = 35.3^{\circ} \text{ (or any correct solution)}$ Any correct second solution from 144.7°, 215.3°, 324.7° The remaining 2 solutions	M1 A1 A1 A1 [*] A1	[5]	Substitute for $\cos^4 x$ and $\cos^2 x$ or OR sub for $\sin^4 x \rightarrow 3\cos^2 x = 2$ $\rightarrow \cos x = (\pm)\sqrt{2/3}$ Allow the first 2 A1 marks for radians (0.616, 2.53, 3.76, 5.67)
7 (i)	$A = (\frac{1}{2}, 0)$	B1	[1]	Accept $x = 0$ at $y = 0$
(ii)	$\int (1-2x)^{\frac{1}{2}} dx = \left[\frac{(1-2x)^{3/2}}{3/2}\right] [\div(-2)]$ $\int (2x-1)^2 dx = \left[\frac{(2x-1)^3}{3}\right] [\div2]$	B1B1 B1B1		May be seen in a single expression May use $\int_{a}^{1} x dy$, may expand
	$\begin{bmatrix} 0 - (-1/3) \end{bmatrix} - \begin{bmatrix} 0 - (-1/6) \end{bmatrix}$ 1/6	M1 A1	[6]	$(2x-1)^2$ Correct use of <i>their</i> limits
8 (i)	fg(x) = 5x Range of fg is $y \ge 0$ oe	M1A1 B1	[3]	only Accept $y > 0$
(ii)	$y = 4/(5x+2) \Longrightarrow x = (4-2y)/5y \text{ oe}$ $g^{-1}(x) = (4-2x)/5x \text{ oe}$ 0, 2 with no incorrect inequality $0 < x \le 2 \text{ oe, c.a.o.}$	M1 A1 B1,B1 B1	[5]	Must be a function of <i>x</i>
9 (i)	XP = -4i + (p - 5)j + 2k [-4i + (p - 5)j + 2k].(pj + 2k) = 0 $p^{2} - 5p + 4 = 0$ p = 1 or 4	B1 M1 A1 A1	[4]	Or PX Attempt scalar prod with OP/PO and set = 0 (= 0 could be implied)
(ii)	$\mathbf{XP} = -4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \rightarrow \mathbf{XP} = \sqrt{16 + 16 + 4}$ Unit vector = 1/6 (-4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) oe	M1 A1	[2]	Expect 6
(iii)	$\mathbf{AG} = -4\mathbf{i} + 15\mathbf{j} + 2\mathbf{k}$ $\mathbf{XQ} = \lambda \mathbf{AG} \text{soi}$ $\lambda = 2/3 \rightarrow \mathbf{XQ} = -\frac{8}{3}\mathbf{i} + 10\mathbf{j} + \frac{4}{3}\mathbf{k}$	B1 M1 A1	[3]	

	Page 6		Mark Scheme				Syllabus	Paper	
			Cambridge International AS/A Level – Octo	ber/Nove	mber	2016	9709	11	
10	(i)	$3z \cdot x^{1/2}$ $x =$	$-\frac{2}{z} = -1 \implies 3z^2 + z - 2 = 0$ (or z) = 2/3 or -1 4/9 only	M1 A1 A1	[3]	Express as 3-term quad. Acce $x^{1/2}$ for z (OR $3x-1=-\sqrt{x}, 9x^2-13x+4=0$ M1, A1,A1 $x = 4/9$)			ept : 0
	(ii)	f () Sub Wh -2	$f(x) = \frac{3x^{3/2}}{3/2} - \frac{2x^{1/2}}{1/2} (+c)$ (+c)	B1B1 M1A1 M1 A1	[6]	c mus Substi (i)	t be present ituting x val	ue from pa	rt
11	(i)	$\frac{dy}{dx}$ m_{tax} Equ	$= -(x-1)^{-2} + 9(x-5)^{-2}$ $= -\frac{1}{4} + \frac{9}{4} = 2$ hation of normal is $y-5 = -\frac{1}{2}(x-3)$ 13	M1A1 B1 M1 A1	[5]	May b Throu m = -	be seen in pa gh(3, 5) and $1/m_{tangent}$	rt (ii) l with	
	(ii)	$(x - x) = \frac{d^2 y}{dx^2}$ Wh	$(-5)^{2} = 9(x-1)^{2}$ $5 = (\pm)3(x-1) \text{ or } (8)(x^{2}-x-2) = 0$ (-1 or 2) $\frac{y}{2} = 2(x-1)^{-3} - 18(x-5)^{-3}$ en $x = -1, \frac{d^{2}y}{dx^{2}} = -\frac{1}{6} < 0$ MAX en $x = 2, \frac{d^{2}y}{dx^{2}} = \frac{8}{3} > 0$ MIN	B1 M1 A1 B1 B1 B1	[6]	Set $\frac{d}{d}$ Simpl solution If chat close and al	$\frac{y}{x} = 0$ and simplify further and on ify for the roots root	nplify nd attempt used, <i>x</i> valu nust be use rrect	ues :d