

MATHEMATICS

9709/42 May/June 2017

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

•				
Question	Answer	Marks	Guidance	
1	EITHER: WD = 20 cos $\theta \times 1.5 \times 12$ (J)	(B 1	Using WD = $Fd \cos \theta$	
	$[\cos\theta = 50/360] \ \theta = \dots$	M1	Use WD = 50 and solve for θ	
	$\theta = 82(.0)$	A1)		
	<i>OR</i> : Power $P = 50/12 = 4.1666$	(B 1	Using Power = WD/time	
	$[50/12 = 20 \cos \theta \times 1.5] \theta =$	M1	Use $P = Fv$ and solve for θ	
	$\theta = 82(.0)$	A1)		
	Total:	3		
2(i)	$v = \sqrt{2 \times 2.5 \times 5} \text{ (ms}^{-1}\text{)}$	B1	AG Using $v^2 = u^2 + 2as$	
	Total:	1		
2(ii)(a)		M1	Attempting PE loss or KE gain	
	PE loss = $0.2 \times 10 \times 6 \sin 30$ [= 6] and KE gain = $0.5 \times 0.2 \times (v^2 - 5^2)$	A1	Both PE and KE correct both unsimplified	
	$[6 = 0.1(v^2 - 5^2)]$	M1	PE loss = KE gain (3 terms)	
	$v^2 = 85 \rightarrow v = 9.22 \text{ ms}^{-1}$	A1		
	Total:	4		

Question	Answer	Marks	Guidance	
2(ii)(b)	Max velocity at lowest point	M1	PE loss = KE gain	
	$[0.2 \times 10 \times 6 =$			
	$0.5 \times 0.2 \times (v^2 - 5^2)$]			
	$v^2 = 145 \rightarrow v = 12(.0) \text{ ms}^{-1}$	A1		
	Total:	2		
3(i)		M1	Attempt s_A as $s_A = k + 10t$ (any k)	
	$s_A = 20 + 10t$	A1		
	$s_B = 16t + \frac{1}{2}(-2)t^2 [= 16t - t^2]$	B1 FT	Allow FT only if $s_A = 10t$ and	
			$s_B = 16(t-2) + \frac{1}{2}(-2)(t-2)^2$	
			i.e. t measured from when A passes O	
	Total:	3		
3(ii)	$v_B = 16 - 2t \longrightarrow v_B = 0, t = 8$	B1		
	$s = s_A - s_B$	M1	Finding distance between A and B at time $t = T (T > 0)$	
	$[= 20 + 10t + t^2 - 16t = t^2 - 6t + 20]$		found from a valid method for $v_B = 0$	
	$t = 8, s = 36 (\mathrm{m})$	A1		
	Total:	3		

May/June 2017

Question	Answer	Marks	Guidance
3(iii)	$\frac{\mathrm{d}s}{\mathrm{d}t} = 2t - 6$	M1	Either use differentiation or complete the square, or state value of <i>t</i> when speeds are the same
	or $s = t^2 - 6t + 20 = (t - 3)^2 + 11$		
	[t = 3]	M1	Solve for <i>t</i> and evaluate $s_A - s_B$ at this value of <i>t</i>
	$s = s_A - s_B = 11 \text{ m}$	A1	
	Total:	3	
4(i)(a)	$[P = 850 \times 42]$	M1	Using $P = Fv$
	P = 35700 W = 35.7 kW	A1	Must be in kW to 3sf
	Total:	2	
4(i)(b)	P = 41700 $\rightarrow [DF = 41700/42]$	M1	Find new power and new DF based on power found in 4(i)(a)
	[(993 - 850) = 1200a]	M1	Apply Newton 2, three terms
	$a = 5/42 = 0.119 \text{ ms}^{-2}$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
4(ii)	DF = 80000/24	B1	$\mathrm{DF} = P/v$
	$[\mathrm{DF} - 850 - mg\sin\theta = 0]$	M1	Newton 2 along the hill, 3 terms
	$[12000 \sin \theta = 80000/24 - 850] \\ \theta = \dots$	M1	Solve for θ , from a three term equation
	$\theta = 11.9$	A1	
	Total:	4	
5		M1	Resolve perpendicular to the plane, three terms
	$R + P \sin 30 = 0.12g \cos 40$	A1	<i>R</i> does not need to be the subject
	F = 0.32R	M1	Use $F = \mu R$
	$[P_{\min}\cos 30 + F = 0.12g\sin 40]$	M1	About to slip down, 3 terms
	$[P_{\max}\cos 30 - F = 0.12g\sin 40]$	M1	About to slip up, 3 terms
	$[P \cos 30 = 0.12g \sin 40$ $\pm 0.32 (0.12g \cos 40 - P \sin 30)]$ OR $[P \cos 30 \pm 0.32R = 0.12g \sin 40$ $R + P \sin 30 = 0.12g \cos 40]$ Must reach $P =$ in either method	M1	Substitute for F and solve for P in either case, 4 terms OR solve a pair of simultaneous equations (each with 3 terms) in R and P for P in one of the cases
	$P_{\rm max} = 1.04 \ P_{\rm min} = 0.676$	A1	For either correct
	$0.676 \leqslant P \leqslant 1.04$	A1	
	Total:	8	

Question	Answer	Marks	Guidance
6(i)	A [T = 0.3a] $B [1.5g \sin \theta - T = 1.5a]$ System [1.5g sin $\theta = 1.8a$]	M1	Apply Newton's second law to A or to B or to the system
		A1	Any two correct equations
		M1	Solve 2 simultaneous equations for <i>a</i> and/or <i>T</i> or use the system equation.
	$a = 9/1.8 = 5 \text{ ms}^{-2}$	A1	
	T = 1.5 N	A1	
	Total:	5	

May/June 2017

Question	Answer	Marks	Guidance
6(ii)	[5 = 3a]	M1	v = u + at used with $t = 3$, $u = 0$, $v = 5$
	a = 5/3 = 1.67	A1	
	$R_A = 3 R_B = 15 \cos 36.9 = 12$	B1	For either reaction
	$[F_A = 3\mu F_B = 12\mu]$	M1	Use $F = \mu R$ for either term
	<i>EITHER</i> : <i>A</i> [$T - F_A = 0.3a$] <i>B</i> [15 sin 36.9 - $T - F_B = 1.5a$] System equation is [1.5g sin 36.9 - $F_A - F_B = 1.8a$]	(M1	Apply Newton's second law to A or to B or to the system
		A2/1/0	A1 Correct equation for A or B A2 Correct equations for A and B OR A2 Correct system equation
	$[9 - 15\mu = 3]$	M1	Solve for μ from equations with correct number of terms
	$\mu = 0.4 = 2/5$	A1)	
	$OR: s = \frac{1}{2} (5/3) \times 3^2 = 7.5$	(B1	Find distance travelled in 3 secs
	$PE loss = 1.5 \times 10 \times 7.5 \times (3/5) = 67.5$	B1	
	KE gain = $\frac{1}{2}(1.8) \times 5^2 = 22.5$	B1	
	$[67.5 = 22.5 + 3\mu \times 7.5 + 12\mu \times 7.5]$	M1	Use Work/Energy equation
	$\mu = 2/5 = 0.4$	A1)	
	Total:	9	